Calculus and Numeric Methods Formulas

I. Common Greek Letters

Lowercase

α	alpha	ε, ε	epsilon	ι	iota	$rac{ u}{\xi}$	nu	ρ, ϱ	rho	φ,φ	phi
β	beta	ζ	zeta	κ	kappa		xi	σ, ς	sigma	χ	chi
γ	gamma	η	eta	λ	lambda	0	omicron	τ	tau	$\psi \ \omega$	psi
δ	delta	θ, θ	theta	μ	mu	π, σ	pi	υ	upsilon		omega

Capitals

Γ	Gamma	Π	Pi
Δ	Delta	Σ	Sigma

- Θ Theta Φ Phi
- Λ Lambda | Ω Omega

II. Algebra

II. A - Remarkable identities (valid in \mathbb{C} , so in \mathbb{R})

 $(a+b)^{2} = a^{2} + 2ab + b^{2} ; (a-b)^{2} = a^{2} - 2ab + b^{2}$ $(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} ; (a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$ $(a+b)^{n} = a^{n} + C_{n}^{1}a^{n-1}b + \dots + C_{n}^{k}a^{n-k}b^{k} + \dots + b^{n}, \text{ where } C_{n}^{k} = n!/(k!(n-k)!)$ $a^{2} - b^{2} = (a+b)(a-b) ; a^{2} + b^{2} = (a+ib)(a-ib)$

II. B – Quadratic formula

Let *a*, *b*, *c* be three real numbers with $a \neq 0$, and $\Delta = b^2 - 4ac$ The equation $ax^2 + bx + c = 0$ has:

> - if $\Delta > 0$, two real solutions $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ and $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ - if $\Delta = 0$, one real solution $x_1 = x_2 = -\frac{b}{2a}$

- if $\Delta < 0$, two complex solutions $x_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$ and $x_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

In all cases: $ax^2 + bx + c = 0 = a(x - x_1)(x - x_2)$; $x_1 + x_2 = -\frac{b}{a}$; $x_1x_2 = \frac{c}{a}$

II. C – Arithmetic progression

Arithmetic series: $1 + 2 + \dots + n = \frac{n(n+1)}{2}$

Geometric series: $1 + b + b^2 + \dots + b^n = \frac{1 - b^{n+1}}{1 - b}$ (if $b \neq 1$)

Factorial: $1 \times 2 \times \cdots \times (n-1) \times n = n!$ (with *n* positive integer and 0! = 1 by definition)

III. Geometry

Equations of simple structures: Line through (0, b) with slope a : y = ax + bCircle with center (a, b) and radius $r : (x - a)^2 + (y - b)^2 = r^2$

Pythagorean theorem: In a right triangle with edges *a* and *b* and hypotenuse $c : a^2 + b^2 = c^2$

Areas and volumes:

IV. Trigonometry

Rules on trigonometric functions can often be derived from the unit circle:

Such as:
$$\sin(-\theta) = -\sin\theta$$

 $\cos(-\theta) = \cos\theta$
 $\sin(\theta + \pi) = -\sin\theta$
 $\cos(\theta + \pi) = -\cos\theta$
 $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$
 $\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta$
 $\sin(\theta + 2\pi) = \sin\theta$
 $\cos(\theta + 2\pi) = \cos\theta$
 $\sin\left(\theta - \frac{\pi}{2}\right) = -\cos\theta$
 $\cos\left(\theta - \frac{\pi}{2}\right) = \sin\theta$

Sum formulas:

 $\cos^{2}\theta + \sin^{2}\theta = 1$ $\cos(a + b) = \cos a \times \cos b - \sin a \times \sin b$ $\cos(a - b) = \cos a \times \cos b + \sin a \times \sin b$ $\sin(a + b) = \sin a \times \cos b + \cos a \times \sin b$ $\sin(a - b) = \sin a \times \cos b - \cos a \times \sin b$ $\tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \times \tan b}$ $\tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \times \tan b}$ $\cos 2a = \cos^{2}a - \sin^{2}a = 2\cos^{2}a - 1 = 1 - 2\sin^{2}a$

$$\sin 2a = 2\sin a \times \cos a$$

$$\sin 2a = 2\sin a \times \cos a$$

$$\cos^2 a = \frac{1}{2}(1 + \cos 2a) ; \quad \sin^2 a = \frac{1}{2}(1 - \cos 2a)$$

Transformation formulas:

$$\cos a \times \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$$

$$\sin a \times \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)]$$

$$\sin a \times \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)]$$

$$\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$$

$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$$

For a triangle with edges *a*, *b*, *c* with respective opposite angles α , β , γ : Law of cosines: $c^2 = a^2 + b^2 - 2ab \cos \gamma$ Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$

Inverse:

secant: $\sec x = \frac{1}{\cos x}$ cosecant: $\csc x = \frac{1}{\sin x}$ cotangent: $\cot x = \frac{1}{\tan x}$

Resolution:

if $\cos x = a$ then $x = \alpha + 2k\pi \lor x = -\alpha + 2k\pi$, for integer k and $\alpha = a\cos a$ in $[-\pi, \pi]$ if $\sin x = a$ then $x = \alpha + 2k\pi \lor x = \pi - \alpha + 2k\pi$, for integer k and $\alpha = a\sin a$ in $[-\pi, \pi]$

Values to know:

radian	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π
degree	0	30	45	60	90	180
sin	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	0
cos	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1
tan	0	$\sqrt{3}/3$	1	$\sqrt{3}$	∞	0

Hyperbolic functions: $\sinh x = \frac{e^{x} - e^{-x}}{2}$ $\cosh x = \frac{e^{x} + e^{-x}}{2}$ $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$

V. Algebraic properties of usual functions

 $\sqrt[n]{x^m} = (\sqrt[n]{x})^m = x^{m/n}$

V. B - Logarithms

 $y = {}^{b}\log x \Leftrightarrow x = b^{y} \text{ (and hence } b^{b}\log x = x)$ $\log 1 = 0 \quad ; \quad {}^{b}\log b = 1$ $\log(xy) = \log(x) + \log(y) \quad ; \quad \log(x/y) = \log(x) - \log(y) \text{ (and hence } \log(1/y) = -\log y)$ $\log(x^{a}) = a \log x$ ${}^{b}\log x = \frac{{}^{c}\log x}{{}^{c}\log b} \quad (e.g.\log x = \frac{\ln x}{\ln 10} \Leftrightarrow {}^{10}\log x = \frac{{}^{e}\log x}{{}^{e}\log 10})$

V. C – Exponents

 $\begin{aligned} x^0 &= 1 \quad ; \quad (xy)^r = x^r y^r \quad ; \quad x^r x^s = x^{r+s} \quad ; \quad \frac{x^r}{x^s} = x^{r-s} \quad ; \quad (x^r)^s = x^{rs} \quad ; \quad x^{-r} = \frac{1}{x^r} \\ \text{If } n \in \mathbb{N}^*, x \ge 0, y \ge 0; \quad y = \sqrt[n]{x} \Leftrightarrow x = y^n \end{aligned}$

VI. Limits

$\lim_{x \to +\infty} \log x = +\infty$	$\lim_{x \to 0} \log x = -\infty$	
$\lim_{x \to +\infty} e^x = +\infty$	$\lim_{x \to -\infty} e^x = 0$	
if $r > 0$, $\lim_{x \to 0} x^r = 0$;	$\text{if } r < 0, \lim_{x \to 0} x^r = +\infty$	
$\text{if } r > 0, \lim_{x \to +\infty} x^r = +\infty \ ;$	$\text{if } r < 0, \lim_{x \to +\infty} x^r = 0$	
$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{\sin x}{x} = 1$
$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$	$\lim_{x\to-\infty} xe^x = 0$	$\lim_{x \to +\infty} \frac{\log x}{x} = 0$
$\text{if } r > 0, \lim_{x \to +\infty} \frac{e^x}{x^r} = +\infty$	$\text{if } r > 0, \lim_{x \to +\infty} x^r e^{-x} = 0$	$\text{if } r > 0, \lim_{x \to +\infty} \frac{\log x}{x^r} = 0$

VII. Differentiation

VII. A - Functions

f(x)	f'(x)
С	0
x	1
x^n	nx^{n-1}
<i>c</i> ^{<i>x</i>}	$c^x \ln c$
1/x	$-1/x^{2}$
$1/x^n$	$-n/x^{n+1}$
\sqrt{x}	$1/(2\sqrt{x})$
$\ln x$	1/x
$c \log x$	$(^{c}\log e)/x$
e ^x	e ^x
cos x	$-\sin x$
sin x	cos x
tan x	$1/\cos^2 x$
arcsin x	$1/\sqrt{1-x^2}$
arccos x	$-1/\sqrt{1-x^2}$
arctan x	$1/(1+x^2)$

VII. B - Operations

$$(u + v)' = u' + v'$$

$$(cu)' = cu'$$

$$(c^{u})' = c^{u} \ln c \ u'$$

$$(uv)' = u'v + uv'$$

$$(1/u)' = -u'/u^{2}$$

$$(u/v)' = (u'v - uv')/v^{2}$$

$$(v(u))' = v'(u) \ u'$$

$$(e^{u})' = e^{u}u'$$

$$(\ln u)' = u'/u$$

$$(u^{\alpha})' = \alpha u^{\alpha - 1}u'$$

$$(\sin u)' = \cos (u) \ u'$$

$$(\cos u)' = -\sin (u) \ u'$$

VIII. Integrals

VIII. A – Fundamental formulas

If F is a primitive of f, then $\int_{a}^{b} f(t) dt = F(b) - F(a)$ If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x) $f(x) - f(a) = \int_{a}^{x} f'(t) dt$

VIII. B – Chasles' formulas

 $\int_{a}^{c} f(t) dt = \int_{a}^{b} f(t) dt + \int_{b}^{c} f(t) dt$ $\int_{b}^{a} f(t) dt = -\int_{a}^{b} f(t) dt$

VIII. C – Positivity

If
$$a \le b$$
 and $f \ge 0$, then $\int_a^b f(t) dt \ge 0$

VIII. D – Linearity

$$\int_{a}^{b} \alpha f(t) + \beta g(t) dt = \alpha \int_{a}^{b} f(t) dt + \beta \int_{a}^{b} g(t) dt$$

VIII. E - Inequality integration

If
$$a \le b$$
 and $f \le g$, then $\int_{a}^{b} f(t) dt \le \int_{a}^{b} g(t) dt$

If $a \le b$ and $m \le f \le M$, then $m(b-a) \le \int_a^b f(t) dt \le M(b-a)$

VIII. F - Partial integration

$$\int_{a}^{b} u(t)v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t) dt$$

IX. Function Analysis

- Find zero crossings of the function (or component functions)
- Find zero crossings of the derivative and sign around them (and give tangent vectors)
- Look at singularities

- Look at behavior at domain ends
- Draw likely points and function

X. Multivariable calculus

$$\nabla f(x_1, x_2, \dots, x_n) = \begin{pmatrix} f_{x_1} \\ f_{x_2} \\ \vdots \\ f_{x_n} \end{pmatrix}$$

The directional derivative of *f* in the direction of row vector *u*: $f_u = \frac{1}{\|u\|} (u \cdot \nabla f)$

A stationary point *p* is defined by $\nabla f(p) = 0$. It is

- a maximum if |H| > 0 and $\frac{\partial^2 f}{\partial x_1^2} < 0$

- a minimum if
$$|H| > 0$$
 and $\frac{\partial^2 f}{\partial x_1^2} > 0$

- a saddle-point if |H| < 0

where the Hessian H is the matrix of second-order derivatives of f

XI. Numeric methods

XI. A – Lagrange interpolation

The polynomial $p(x) = p_0(x) + p_1(x) + \dots + p_n(x)$ with

$$p_j(x) = y_j \prod_{\substack{k=0\\k\neq j}}^n \frac{x - x_k}{x_j - x_k}$$

interpolates the n + 1 support points { $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$ }.

The intersection point of the line $(x_0 x_1)$ and the x-axis is (c,0) where $c = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$.

If $f(c) = 0 \pm \varepsilon$, the root is found. If $f(c)f(x_0) < 0$, the root is to the left of *c*. If $f(c)f(x_0) > 0$, the root is to the right of *c*.

XI. C – Picard iteration

Change the equation f(x) = 0 into g(x) = x. Approximation of the root is given by $x_{n+1} = g(x_n)$ with a suitable initial value x_0 .

XI. D - Newton-Raphson iteration

A solution to f(x) = 0 may be found by iterating $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ with a suitable initial value x_0 .

XII. Complex calculus

Algebraic form: z = x + iyPolar form: $z = |z|(\cos \theta + i \sin \theta) = |z|e^{i\theta}$, |z| > 0

$$\overline{OM} = x\vec{u} + y\vec{v}$$

$$\overline{OP} = x = Re(z) = |z|\cos\theta$$

$$\overline{OQ} = y = Im(z) = |z|\sin\theta$$

$$OM = |z| = \sqrt{x^2 + y^2}$$

Algebraic operations:

z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')zz' = (x + iy)(x' + iy') = (xx' - yy') + i(xy' + x'y)

Conjugate:

$$z = x + iy = |z|e^{i\theta} ; \quad \bar{z} = x - iy = |z|e^{-i\theta}$$

$$x = \frac{1}{2}(z + \bar{z}) ; \quad y = \frac{1}{2i}(z - \bar{z})$$

$$\overline{z + z'} = \bar{z} + \overline{z'} ; \quad \overline{zz'} = \bar{z}\overline{z'}$$

$$z\bar{z} = x^2 + y^2 = |z|^2$$

$$\frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2} = \frac{1}{|z|}e^{-i\theta}$$

Product and ratio:

 $\begin{aligned} zz' &= \left(|z|e^{i\theta}\right) \left(|z|'e^{i\theta'}\right) = |z||z|'e^{i\left(\theta+\theta'\right)} &; \quad |zz'| = |z||z'|\\ \frac{z}{z'} &= \frac{|z|e^{i\theta}}{|z|'e^{i\theta'}} = \frac{|z|}{|z|'}e^{i\left(\theta-\theta'\right)} &; \quad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}\\ z^n &= \left(|z|e^{i\theta}\right)^n = |z|^n e^{in\theta} \end{aligned}$

Triangle inequality: $||z| - |z'|| \le |z + z'| \le |z| + |z'|$

Euler's formulas:

 $\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) \qquad ; \qquad \sin\theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$

De Moivre's formula: $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \quad i.e. \quad (e^{i\theta})^n = e^{in\theta}$