Calculus and Numeric Methods Formulas

I. Common Greek Letters

Lowercase

α	alpha	ε, ϵ	epsilon	ι	iota	ν	nu	ρ, ϱ	rho	φ, ϕ	phi
β	beta	ζ	zeta	κ	kappa	ζ	xi	σ, ζ	sigma	χ	chi
γ	gamma	η	eta	λ	lambda	o	omicron	τ	tau	ψ	psi
δ	delta	θ, ϑ	theta	μ	mu	π, ϖ	pi	v	upsilon	ω	omega

Capitals

Γ	Gamma	Π	Pi
Δ	Delta	Σ	Sigma
Θ	Theta	Φ	Phi
Λ	Lambda	Ω	Omega

II. Algebra

II. A - Remarkable identities (valid in \mathbb{C}, so in \mathbb{R})
$(a+b)^{2}=a^{2}+2 a b+b^{2} \quad ; \quad(a-b)^{2}=a^{2}-2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \quad ; \quad(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
$(a+b)^{n}=a^{n}+C_{n}^{1} a^{n-1} b+\cdots+C_{n}^{k} a^{n-k} b^{k}+\cdots+b^{n}$, where $C_{n}^{k}=n!/(k!(n-k)!)$
$a^{2}-b^{2}=(a+b)(a-b) \quad ; \quad a^{2}+b^{2}=(a+i b)(a-i b)$

II. B - Quadratic formula

Let a, b, c be three real numbers with $a \neq 0$, and $\Delta=b^{2}-4 a c$
The equation $a x^{2}+b x+c=0$ has:

- if $\Delta>0$, two real solutions $x_{1}=\frac{-b+\sqrt{\Delta}}{2 a}$ and $x_{2}=\frac{-b-\sqrt{\Delta}}{2 a}$
- if $\Delta=0$, one real solution $x_{1}=x_{2}=-\frac{b}{2 a}$
- if $\Delta<0$, two complex solutions $x_{1}=\frac{-b+i \sqrt{-\Delta}}{2 a}$ and $x_{2}=\frac{-b-i \sqrt{-\Delta}}{2 a}$

In all cases: $a x^{2}+b x+c=0=a\left(x-x_{1}\right)\left(x-x_{2}\right) \quad ; x_{1}+x_{2}=-\frac{b}{a} \quad ; x_{1} x_{2}=\frac{c}{a}$
II. C - Arithmetic progression

Arithmetic series: $1+2+\cdots+n=\frac{n(n+1)}{2}$

Geometric series: $1+b+b^{2}+\cdots+b^{n}=\frac{1-b^{n+1}}{1-b} \quad($ if $b \neq 1)$
Factorial: $1 \times 2 \times \cdots \times(n-1) \times n=n!$ (with n positive integer and $0!=1$ by definition)

III. Geometry

Equations of simple structures:
Line through $(0, b)$ with slope $a: y=a x+b$
Circle with center (a, b) and radius $r:(x-a)^{2}+(y-b)^{2}=r^{2}$
Pythagorean theorem:
In a right triangle with edges a and b and hypotenuse $c: a^{2}+b^{2}=c^{2}$

Areas and volumes:

Triangle area
$A=\frac{1}{2} b h$
Tetrahedron volume

$V=\frac{1}{3} A h$

Trapezoid area
$A=\frac{b_{1}+b_{2}}{2} h$

Rectangle area $A=b h$

Circle area
$A=\pi r^{2}$
Circumference $C=2 \pi r$

Cylinder volume $V=\pi r^{2} h$

Curved surface area $A=2 \pi r h$

IV. Trigonometry

$$
\begin{aligned}
& \sin \theta=\frac{o p p}{h y p} \quad \cos \theta=\frac{a d j}{h y p} \quad \tan \theta=\frac{o p p}{a d j} \\
& \tan x=\frac{\sin x}{\cos x}
\end{aligned}
$$

Rules on trigonometric functions can often be derived from the unit circle:

Such as: $\sin (-\theta)=-\sin \theta$
$\cos (-\theta)=\cos \theta$
$\sin (\theta+\pi)=-\sin \theta$
$\cos (\theta+\pi)=-\cos \theta$
$\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta$
$\cos \left(\theta+\frac{\pi}{2}\right)=-\sin \theta$
$\sin (\theta+2 \pi)=\sin \theta$
$\cos (\theta+2 \pi)=\cos \theta$
$\sin \left(\theta-\frac{\pi}{2}\right)=-\cos \theta$
$\cos \left(\theta-\frac{\pi}{2}\right)=\sin \theta$

Sum formulas:

$\cos ^{2} \theta+\sin ^{2} \theta=1$
$\cos (a+b)=\cos a \times \cos b-\sin a \times \sin b$
$\cos (a-b)=\cos a \times \cos b+\sin a \times \sin b$
$\sin (a+b)=\sin a \times \cos b+\cos a \times \sin b$
$\sin (a-b)=\sin a \times \cos b-\cos a \times \sin b$
$\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \times \tan b}$
$\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \times \tan b}$
$\cos 2 a=\cos ^{2} a-\sin ^{2} a=2 \cos ^{2} a-1=1-2 \sin ^{2} a$
$\sin 2 a=2 \sin a \times \cos a$
$\cos ^{2} a=\frac{1}{2}(1+\cos 2 a) ; \sin ^{2} a=\frac{1}{2}(1-\cos 2 a)$

Transformation formulas:

$\cos a \times \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)]$
$\sin a \times \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$
$\sin a \times \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]$
$\cos p+\cos q=2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$
$\cos p-\cos q=-2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$
$\sin p+\sin q=2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$
$\sin p-\sin q=2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$

For a triangle with edges a, b, c with respective opposite angles α, β, γ :
Law of cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$
Law of sines: $\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c}$
Inverse:
secant: $\sec x=\frac{1}{\cos x} \quad$ cosecant: $\csc x=\frac{1}{\sin x} \quad$ cotangent: $\cot x=\frac{1}{\tan x}$
Resolution:
if $\cos x=a$ then $x=\alpha+2 k \pi \vee x=-\alpha+2 k \pi$, for integer k and $\alpha=\operatorname{acos} a$ in $[-\pi, \pi]$ if $\sin x=a$ then $x=\alpha+2 k \pi \vee x=\pi-\alpha+2 k \pi$, for integer k and $\alpha=\operatorname{asin} a$ in $[-\pi, \pi]$

Values to know:

radian	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$	π
degree	0	30	45	60	90	180
\sin	0	$1 / 2$	$\sqrt{2} / 2$	$\sqrt{3} / 2$	1	0
\cos	1	$\sqrt{3} / 2$	$\sqrt{2} / 2$	$1 / 2$	0	-1
\tan	0	$\sqrt{3} / 3$	1	$\sqrt{3}$	∞	0

Hyperbolic functions:

$\sinh x=\frac{e^{x}-e^{-x}}{2}$
$\cosh x=\frac{e^{x}+e^{-x}}{2}$
$\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$

V. Algebraic properties of usual functions

V. A-Roots

$\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}=x^{m / n}$

V. B-Logarithms

$y={ }^{b} \log x \Leftrightarrow x=b^{y}\left(\right.$ and hence $\left.b^{b} \log x=x\right)$
$\log 1=0 \quad ; \quad{ }^{b} \log b=1$
$\log (x y)=\log (x)+\log (y) \quad ; \quad \log (x / y)=\log (x)-\log (y)$ (and hence $\log (1 / y)=-\log y$)
$\log \left(x^{a}\right)=a \log x$
${ }^{b} \log x=\frac{{ }^{c} \log x}{{ }^{c} \log b} \quad\left(e . g \cdot \log x=\frac{\ln x}{\ln 10} \Leftrightarrow{ }^{10} \log x=\frac{{ }^{e} \log x}{{ }^{e} \log 10}\right)$

V. C-Exponents

$x^{0}=1 \quad ; \quad(x y)^{r}=x^{r} y^{r} \quad ; \quad x^{r} x^{s}=x^{r+s} \quad ; \quad \frac{x^{r}}{x^{s}}=x^{r-s} \quad ; \quad\left(x^{r}\right)^{s}=x^{r s} \quad ; \quad x^{-r}=\frac{1}{x^{r}}$
If $n \in \mathbb{N}^{*}, x \geq 0, y \geq 0: \quad y=\sqrt[n]{x} \Leftrightarrow x=y^{n}$

VI. Limits

$\begin{array}{cl}\lim _{x \rightarrow+\infty} \log x=+\infty & \lim _{x \rightarrow 0} \log x=-\infty \\ \lim e^{x}=+\infty & \lim e^{x}=0\end{array}$
$\lim _{x \rightarrow+\infty} e^{x}=+\infty \quad \lim _{x \rightarrow-\infty}$
if $r>0, \lim _{x \rightarrow 0} x^{r}=0 \quad ; \quad$ if $r<0, \lim _{x \rightarrow 0} x^{r}=+\infty$
if $r>0, \lim _{x \rightarrow+\infty} x^{r}=+\infty ; \quad$ if $r<0, \lim _{x \rightarrow+\infty} x^{r}=0$
$\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$
$\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
$\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$
$\lim _{x \rightarrow-\infty} x e^{x}=0$
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$\lim _{x \rightarrow+\infty} \frac{\log x}{x}=0$
if $r>0, \lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{r}}=+\infty \quad$ if $r>0, \lim _{x \rightarrow+\infty} x^{r} e^{-x}=0$

VII. Differentiation

VII. A - Functions

$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
c	0
x	1
x^{n}	$n x^{n-1}$
c^{x}	$c^{x} \ln c$
$1 / x$	$-1 / x^{2}$
$1 / x^{n}$	$-n / x^{n+1}$
\sqrt{x}	$1 /(2 \sqrt{x})$
$\ln x$	$1 / x$
${ }^{c} \log x$	$\left({ }^{c} \log e\right) / x$
e^{x}	e^{x}
$\cos x$	$-\sin x$
$\sin x$	$\cos x$
$\tan x$	$1 / \cos { }^{2} x$
$\arcsin x$	$1 / \sqrt{1-x^{2}}$
$\arccos x$	$-1 / \sqrt{1-x^{2}}$
$\arctan x$	$1 /\left(1+x^{2}\right)$

VII. B-Operations

$$
\begin{aligned}
& (u+v)^{\prime}=u^{\prime}+v^{\prime} \\
& (c u)^{\prime}=c u^{\prime} \\
& \left(c^{u}\right)^{\prime}=c^{u} \ln c u^{\prime} \\
& (u v)^{\prime}=u^{\prime} v+u v^{\prime} \\
& (1 / u)^{\prime}=-u^{\prime} / u^{2} \\
& (u / v)^{\prime}=\left(u^{\prime} v-u v^{\prime}\right) / v^{2} \\
& (v(u))^{\prime}=v^{\prime}(u) u^{\prime} \\
& \left(e^{u}\right)^{\prime}=e^{u} u^{\prime} \\
& (\ln u)^{\prime}=u^{\prime} / u \\
& \left(u^{\alpha}\right)^{\prime}=\alpha u^{\alpha-1} u^{\prime} \\
& (\sin u)^{\prime}=\cos (u) u^{\prime} \\
& (\cos u)^{\prime}=-\sin (u) u^{\prime}
\end{aligned}
$$

VIII. Integrals

VIII. A - Fundamental formulas

If F is a primitive of f, then $\int_{a}^{b} f(t) d t=F(b)-F(a)$
If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$
$f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d t$
VIII. B - Chasles' formulas
$\int_{a}^{c} f(t) d t=\int_{a}^{b} f(t) d t+\int_{b}^{c} f(t) d t$
$\int_{b}^{a} f(t) d t=-\int_{a}^{b} f(t) d t$
VIII. C - Positivity

If $a \leq b$ and $f \geq 0$, then $\int_{a}^{b} f(t) d t \geq 0$
VIII. D - Linearity
$\int_{a}^{b} \alpha f(t)+\beta g(t) d t=\alpha \int_{a}^{b} f(t) d t+\beta \int_{a}^{b} g(t) d t$
VIII. E - Inequality integration

If $a \leq b$ and $f \leq g$, then $\int_{a}^{b} f(t) d t \leq \int_{a}^{b} g(t) d t$
If $a \leq b$ and $m \leq f \leq M$, then $m(b-a) \leq \int_{a}^{b} f(t) d t \leq M(b-a)$
VIII. F - Partial integration
$\int_{a}^{b} u(t) v^{\prime}(t) d t=[u(t) v(t)]_{a}^{b}-\int_{a}^{b} u^{\prime}(t) v(t) d t$

IX. Function Analysis

- Find zero crossings of the function (or component functions)
- Find zero crossings of the derivative and sign around them (and give tangent vectors)
- Look at singularities
- Look at behavior at domain ends
- Draw likely points and function

X. Multivariable calculus

$\nabla f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{c}f_{x_{1}} \\ f_{x_{2}} \\ \vdots \\ f_{x_{n}}\end{array}\right)$
The directional derivative of f in the direction of row vector u : $f_{u}=\frac{1}{\|u\|}(u \cdot \nabla f)$
A stationary point p is defined by $\nabla f(p)=0$. It is

- a maximum if $|H|>0$ and $\frac{\partial^{2} f}{\partial x_{1}^{2}}<0$
- a minimum if $|H|>0$ and $\frac{\partial^{2} f}{\partial x_{1}^{2}}>0$
- a saddle-point if $|H|<0$
where the Hessian H is the matrix of second-order derivatives of f

XI. Numeric methods

XI. A - Lagrange interpolation

The polynomial $p(x)=p_{0}(x)+p_{1}(x)+\cdots+p_{n}(x)$ with

$$
p_{j}(x)=y_{j} \prod_{\substack{k=0 \\ k \neq j}}^{n} \frac{x-x_{k}}{x_{j}-x_{k}}
$$

interpolates the $n+1$ support points $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.
XI. B - Regula Fasli

The intersection point of the line $\left(x_{0} x_{1}\right)$ and the x-axis is $(c, 0)$ where $c=\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$.
If $f(c)=0 \pm \varepsilon$, the root is found. If $f(c) f\left(x_{0}\right)<0$, the root is to the left of c. If $f(c) f\left(x_{0}\right)>0$, the root is to the right of c.

XI. C-Picard iteration

Change the equation $f(x)=0$ into $g(x)=x$. Approximation of the root is given by $x_{n+1}=g\left(x_{n}\right)$ with a suitable initial value x_{0}.
XI. D-Newton-Raphson iteration

A solution to $f(x)=0$ may be found by iterating $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f\left(x_{n}\right)}$ with a suitable initial value x_{0}.

XII. Complex calculus

Algebraic form: $z=x+i y$
Polar form: $z=|z|(\cos \theta+i \sin \theta)=|z| e^{i \theta},|z|>0$

$$
\begin{aligned}
& \overrightarrow{O M}=x \vec{u}+y \vec{v} \\
& \overrightarrow{O P}=x=\operatorname{Re}(z)=|z| \cos \theta \\
& \overrightarrow{O Q}=y=\operatorname{Im}(z)=|z| \sin \theta \\
& O M=|z|=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Algebraic operations:

$$
\begin{aligned}
& z+z^{\prime}=(x+i y)+\left(x^{\prime}+i y^{\prime}\right)=\left(x+x^{\prime}\right)+i\left(y+y^{\prime}\right) \\
& z z^{\prime}=(x+i y)\left(x^{\prime}+i y^{\prime}\right)=\left(x x^{\prime}-y y^{\prime}\right)+i\left(x y^{\prime}+x^{\prime} y\right)
\end{aligned}
$$

Conjugate:
$z=x+i y=|z| e^{i \theta} \quad ; \quad \bar{z}=x-i y=|z| e^{-i \theta}$
$x=\frac{1}{2}(z+\bar{z}) \quad ; \quad y=\frac{1}{2 i}(z-\bar{z})$
$\overline{z+z^{\prime}}=\bar{z}+\overline{z^{\prime}} \quad ; \quad \overline{z z^{\prime}}=\bar{z} \overline{z^{\prime}}$
$z \bar{z}=x^{2}+y^{2}=|z|^{2}$
$\frac{1}{z}=\frac{\bar{z}}{z \bar{Z}}=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}=\frac{1}{|z|} e^{-i \theta}$
Product and ratio:
$z z^{\prime}=\left(|z| e^{i \theta}\right)\left(|z|^{\prime} e^{i \theta^{\prime}}\right)=|z||z|^{\prime} e^{i\left(\theta+\theta^{\prime}\right)} \quad ; \quad\left|z z^{\prime}\right|=|z|\left|z^{\prime}\right|$
$\frac{z}{z^{\prime}}=\frac{|z| e^{i \theta}}{|z|^{\prime} e^{i \theta^{\prime}}}=\frac{|z|}{|z|^{\prime}} e^{i\left(\theta-\theta^{\prime}\right)} \quad ; \quad\left|\frac{z}{z^{\prime}}\right|=\frac{|z|}{\left|z^{\prime}\right|}$
$z^{n}=\left(|z| e^{i \theta}\right)^{n}=|z|^{n} e^{i n \theta}$
Triangle inequality:
$\left||z|-\left|z^{\prime}\right|\right| \leq\left|z+z^{\prime}\right| \leq|z|+\left|z^{\prime}\right|$

Euler's formulas:

$\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right) \quad ; \quad \sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$
De Moivre's formula:
$(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$ i.e. $\left(e^{i \theta}\right)^{n}=e^{i n \theta}$

